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Tree species identification is important for a variety of natural resource management and monitoring
activities including riparian buffer characterization, wildfire risk assessment, biodiversity monitoring, and
wildlife habitat assessment. Intensity data recorded for each laser point in a LIDAR system is related to the
spectral reflectance of the target material and thus may be useful for differentiating materials and ultimately
tree species. The aim of this study is to test if LIDAR intensity data can be used to differentiate tree species.
Leaf-off and leaf-on LIDAR data were obtained in the Washington Park Arboretum, Seattle, Washington, USA.
Field work was conducted to measure tree locations, tree species and heights, crown base heights, and crown
diameters of individual trees for eight broadleaved species and seven coniferous species. LIDAR points from
individual trees were identified using the field-measured tree location. Points from adjacent trees within a
crown were excluded using a procedure to separate crown overlap. Mean intensity values of laser returns
within individual tree crowns were compared between species. We found that the intensity values for
different species were related not only to reflective properties of the vegetation, but also to a presence or
absence of foliage and the arrangement of foliage and branches within individual tree crowns. The
classification results for broadleaved and coniferous species using linear discriminant function with a cross
validation suggests that the classification rate was higher using leaf-off data (83.4%) than using leaf-on data
(73.1%), with highest (90.6%) when combining these two LIDAR data sets. The result also indicates that
different ranges of intensity values between two LIDAR datasets didn't affect the result of discriminant
functions. Overall results indicate that some species and species groups can be differentiated using LIDAR
intensity data and implies the potential of combining two LIDAR datasets for one study.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Tree species identification is important for a variety of natural
resource management and monitoring activities including riparian
buffer characterization, wildfire risk assessment, biodiversity mon-
itoring, and wildlife habitat improvement. Conventionally an identi-
fication of tree species is conducted by a labor-intensive inventory in
the field or on an interpretation of large-scale aerial photographs.
However, these methods are costly, time-consuming and not applic-
able to large or isolated areas. Since remotely sensed data emerged
and became applied in forestry, there have been efforts to classify
forest types of large areas (Nelson et al., 1984). However, the use of
this type of data has limitations to distinguish tree species due to the
lack of high spectral resolution or large number of spectral bands.

Hyperspectral data in hundreds of spectral bands enabled a finer
discrimination of spectral properties and have been applied to
identifying tree species (Aardt et al., 2000; Gong et al., 1997). The
spectral characteristics of tree species were studied at various scales
from leaf to stand scales (Roberts et al., 2004; Williams, 1991).
Spectral reflectance of tree species has been studied by different types
and ages of the tree species. Rock et al. (1994) reported that second
year foliage showed lower reflectance than first year foliage in the
near infrared wavelength regions. Spectral reflectance of broadleaved
species was found to be higher than that of coniferous species in
several studies in the near-infrared wavelengths. Roberts et al. (2004)
found that spectral reflectance of five broadleaved deciduous species
studied was higher than five conifers studied in the near-infrared
wavelength region at the branch-scale. They also found that bark has a
lower spectral reflectance than leaves.

Light Detection and Ranging (LIDAR) offers an advantage overmost
other remote sensing technologies in its ability to capture 3-
dimensional measurements over large areas. High-resolution laser
scanning data is typically used to automatically generate a digital
terrain model or a digital canopy model. The airborne laser scanning
technique can supply forest monitoring and management planning
with accuracyand efficiency. In the past, LIDAR research has focused on
estimating forest structural estimates such as height, forest volume
and biomass (Holmgren et al., 2003; Means et al., 2000; Naesset &
Okland, 2002; Nelson et al.,1988; Popescu et al., 2002). High resolution
airborne laser scanning systems now offer the possibility to isolate
individual tree crowns. Most of previous studies focused on segment-
ing Digital Surface Model (DSM) by fitting parabolic surface (Persson
et al., 2002), with local filtering and variable window size (Popescu et
al., 2002), or usingWatershed algorithmwith local minima (Pyysalo &
Hyyppa, 2002). Some researchers worked with LIDAR raw data to
reduce the loss of information in the process of creating DSM from
LIDAR point cloud (Brandtberg et al., 2003; Pyysalo & Hyyppa, 2002;
Morsdorf et al., 2004). Pyysalo & Hyyppa (2002) used vector polygons
for each individual tree crown after manually delineating points
visualized on top of the DSM. Morsdorf et al. (2004) carried out
segmentation using cluster analysis on the LIDAR raw data in all three
coordinate dimensions. These methods were mainly intended to
extract variables using coordinate data to create the structure metrics.

One variable included with most LIDAR data is a relative measure
of the return signal strength associated with each return. This value,
called the intensity, provides a measure of the amount of energy
reflected from a target. Intensity values vary depending on the flying
height, atmospheric conditions, directional reflectance properties, the
reflectivity of the target, and the laser settings (Baltsavias, 1999). Most
commercial LIDAR systems used for topographic mapping use lasers
that emit energy in the near infrared range of the electromagnetic
spectrum (often 1064 nm). Green vegetation reflects this wavelength
well (Swain & Davis, 1978). As a result, LIDAR intensity data should
contain information relating to forest type and condition.

In the past, LIDAR intensity data have not been used as extensively
as the three dimensional structure data represented by laser returns.
Some researchers have used LIDAR intensity data for classification.
Song et al. (2002) applied filters to a gridded representation of inten-
sity data and evaluated its potential to classify different materials such
as asphalt, grass, roof, and trees. They concluded that LIDAR intensity
can be used for land-cover classification and also reported that the
relative intensity of (leaf-on) broadleaved trees was almost twice that
of conifers. Brandtberg et al. (2003) used indices derived from laser
reflectance data as well as height of branches to classify three
deciduous species. Holmgren and Persson (2004) used two groups of
variables, crown shape-based metrics and intensity-based metrics, to
differentiate Norway spruce and Scots pine. These authors found that
the density of crowns and gaps within the crowns affected different
mean intensity values and standard deviations for the two species. A
new approach using a well-defined directed graph (digraph) (Brant-
berg, 2007) improved the classification accuracy markedly compared
with a previous study (Brandtberg et al., 2003) using both intensity
data and more reliable shape prediction. Moffiet et al. (2005)
conducted exploratory data analysis to assess the potential of laser
return type and return intensity as variables for classification of
individual trees or forest stands according to species. They found that
discrimination at the individual tree level betweenwhite cypress pine
(Callitrus glaucophylla) and poplar box (Eucalyptus populnca) was not
always possible, although the discrimination was reliable at the stand
level. They also indicated that return intensity statistics for the forest
canopy, such as average and standard deviation, were related not only
to the reflective properties of the vegetation, but also to the larger
scale properties of the forest such as canopy openness and the spacing
and type of foliage components within individual tree crowns.
Hasegawa (2006) investigated the characteristics of LIDAR intensity
data for land cover classification and indicated that it is difficult for
extraction of trees without supplementary information because trees
have a wide intensity range and the range overlaps with the range of
other height objects. Brennan and Webster (2006) utilized LIDAR
height and intensity data to classify various land cover types using an
object-oriented approach. They concluded that through the use of
spectral and spatial attributes of LIDAR data they were able to classify
a variety of land cover types using derived surfaces, image object
segmentation, and rule-based classification techniques. Donoghue et
al. (2007) evaluated the ability LIDAR data to estimate the proportion
of species in pine/spruce mixed plantations using LIDAR height and
intensity data. They used LIDAR intensity data to separate spruce and
pine species and found that the coefficient of variation and LIDAR
intensity data provided the most useful predictors of the proportion
of spruce.

As the importance of laser scanner data increases in both scientific
and commercial communities, the influences of scanning angle or
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flying height on the biophysical vegetation products (Ahokas et al.,
2005) or on the DSM (Morsdorf et al., 2006) have been studied in
European countries which has a significant topography. Growing
interest in LIDAR intensity data lead to the study of intensity data
depending on scan angles, flight altitude or laser path length caused
by changes in the distance between the sensor and ground object.
Especially, forest species classification using LIDAR intensity data may
be affected by variations in laser path length due to topographic
ranges. LIDAR intensity data have been investigated for their
variability depending on scan angles, flight altitude or topography
(Coren and Sterzai, 2006; Donoghue et al., 2007; Hasegawa, 2006). It
has been found that as a scan angle increases, the variability of
intensity data tended to increase, however, low scan angles had no
effect on the intensity data. It should be noted that these studies were
carried out using a specific laser scanner system with a specific
condition for their study purposes. Hasegawa (2006) indicated that
the variability of intensity data depends on target materials tested and
also found that intensity correctionwith distance and scan angle is not
always applicable, the effect of correction is not significant and
consequently raw intensity value usage is justified. Previously, raw
intensity data were used without corrections for the study of forest
species differentiation (Brandtberg et al., 2003; Holmgren & Persson,
2004).

Recently, LIDAR intensity data were found to be directly related to
spectral reflectance of the target materials (Ahokas et al., 2006). These
authors studied the relationship between calibration of laser scanner
intensity and known brightness targets. They concluded that intensity
values were directly related to target reflectance from a variety of
altitudes (200 m, 1000 m, and 3000 m) after correcting errors due to
range, incidence angle (both Bidirectional Reflectance Distribution
Function, BRDF, and range correction), atmospheric transmittance,
attenuation using dark object addition and transmitted power
(difference in Pulse Repetition Frequency, PRF, will lead to different
transmitter power values). Given that most tree species classification
using passively sensed data relies on the spectral (and particularly
infrared) reflectance characteristics of foliage and branches, LIDAR
intensity data should provide a basis to differentiate between
individual tree species or species groups. Because spectral reflectance
changes depending on the time of a year for deciduous species (Gates,
1980), acquiring LIDAR datasets in leaf-on and leaf-off conditions
could provide additional information useful for species differentiation.
By comparing intensity data from different LIDAR systems with
different conditions, this study investigates the possibility of the use of
multiple LIDAR data for the tree species study. By analyzing LIDAR
intensity values of various tree species with different foliage
characteristics, such as the presence or absence of foliage, and the
spacing and type of foliage components within individual tree crowns,
the relative importance of the effect of these characteristics on LIDAR-
based species classification can be evaluated. For this study, it is
necessary to isolate individual trees to ensure that LIDAR returns
represent a single tree. Because the intensity value associated with
each laser return varies depending on the target material, laser returns
from coalesced crowns need to be separated even though they were
positioned within crown edges.

The objective of this research is to test if multiple LIDAR intensity
data can be used to differentiate individual tree species and species
groups, and to investigate what factors would be related to different
intensity characteristics between species.

2. Data collection

2.1. Study area

The study area is the Washington Park Arboretum, an urban green
space on the shores of LakeWashington just east of downtown Seattle,
WA (see Fig. 1). The area covers 93 ha and a topographic range is 15–
55m above sea level with less than 30% of slope for the majority of the
site. This is a suitable field site to study forest parameters at the
individual tree level because individual trees can be easily detected
and measured, and in many cases, tree crowns are not significantly
overlapped. We could easily collect individual samples of various
deciduous and coniferous species with accurate positions at this study
site.

2.2. LIDAR data

This research utilized two LIDAR datasets collected over the
Arboretum. The first was acquired on August 30th, 2004 to obtain
data in leaf-on conditions using an Optech ALTM 30/70 LIDAR system,
operating at a flight altitude of 1200 m above the ground level
configured to acquire data using a narrow scan angle of b11° either
side of NADIR and with a point density up to 5/m2. Scan pulse
repetition frequency was 71 kHz and single flight line was used. The
second was acquired on March 15th, 2005 to obtain data in leaf-off
conditions using an Optech ALTM 3100 LIDAR system, operating at a
flight altitude of 900 m above the ground level configured to acquire
data using a narrow scan angle of b10° either side of NADIR and with a
point density up to 20 points/m2. Scan pulse repetition frequency was
100 kHz and flight line overlap was 50%. Both systems use a 1064 nm
laser and beam divergence of 0.31mrad with footprint size of 0.372 m
with leaf-on data and 0.279 with leaf-off data. The x, y, z position
(easting, northing and elevation) and intensity of each pulse were
supplied. Up to three returns per pulsewere recorded for the first leaf-
on LIDAR data and up to four returns were recorded for the second
leaf-off LIDAR data. The timing of the second LIDAR flight was planned
so as to capture leaf-off conditions for the deciduous species.
Unfortunately, the second dataset did not capture all trees in leaf-off
conditions due to widely varying phenology across the wide range of
species within the arboretum and unusually early bud break in 2005.
Digital photos of individual treeswere taken at the field site on the day
of LIDAR acquisition and from an aircraft on the day after the LIDAR
acquisition to enable assessments of the phenological condition of
various tree species.

2.3. LIDAR-based digital terrain model

The leaf-off LIDAR dataset was used to create a digital terrain
model for the study area. These datawere acquiredwith a higher point
density/square meter and using a series of overlapping flightlines. A
1×1 m resolution DTM was created using the FUSION/LDV software
(McGaughey & Carson, 2003; McGaughey et al., 2004). The method
for creating the LIDAR-based DTM is well-described in Andersen et al.
(2006).

2.4. Species selection

We selected specific species for this study to ensure analysis of
trees with different biophysical characteristics representing both
deciduous and coniferous species groups. Seven coniferous species
and eight broadleaved species were selected. Table 1 shows how
species can be grouped depending on their characteristic leaf-
structure.

2.5. Field data

Individual tree measurements were conducted at the Arboretum
from April, 2005 through July, 2005. Twenty to twenty-five individual
trees within each species were selected. Our purpose was to collect
individual tree samples of the selected species, and so we determined
the tree locations using the Arboretum map which records tree
locations with the species names and conditions and field survey
before determining plot locations. If over ten tree samples were



Fig. 1. Approximate location of the Washington Park Arboretum, Seattle, WA.
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grouped together, this place was regarded as a plot and then we
located three reference points that roughly form an equilateral
triangle with 30–100 m sides using a Trimble Pro XR/XRS GPS system
which is a differential GPS unit. Points were visible from one another
to allow laser shots to and from each point and points were located in
openings or areas with sparse vegetation cover to ensure adequate
GPS operation. Individual tree locations were recorded from at least
two of the triangle points to confirm accurate tree locations. If a tree
within each plot didn't belong to the species selected, they were
ignored. Laser rangefinder and compass were used to shoot foresights
and backsights (horizontal and vertical distances and azimuth) along
each side of the triangle. For the most part, isolated individual trees in
open areas were selected to simplify the identification and measure-
ment of individual trees in the LIDAR point cloud. For each tree, stem
Table 1
Tree species used in this research.

Coniferous species

Leaf structures Species

Clustered needles Evergreen • Pinus
Deciduous • Larch (Larix)

Single needles On woody pegs • Spruce (Picea)

With flat needles • Douglas-fir (Pseudotsuga mensiesii)
• Western hemlock (Tsuga heterophylla)
• Redwood (Sequoia sempervirens)

Scale-like leaves • Western red cedar (Thuja plicata)
diameter was measured at 1.4 m above ground with a diameter tape
and the species name was recorded. Tree height, crown base height
(CBH), and crown diameter (CD) were also measured for each tree.
Tree heights and CBH were measured using a clinometer and an
Impulse LR laser. CBH was measured as the distance along the stem
from the ground to the attachment point of the first living branch. If
there is a wide-separation between this branch and the main crown, a
higher andmore representative branchwas selected for measurement
of crown base height (Holmgren & Persson, 2004). In this study, CD
was measured to assist in detecting individual tree locations in the
LIDAR point clouds and two perpendicular measurements were
obtained. One in the north–south direction through the center of
the stem was measured, and the other in the east–west direction
crossing the mid- point of the north–south length. The final CD was
Broadleaved species

Leaf structures Species

Opposite simple leaves • Bigleaf maple (Acer macrophyllum)
Alternate compound leaves • Sorbus
Alternate simple leaves Thorns • Prunus

• Malus
No thorns • Birch (Betula)

• Elm (Ulmus)
• Oak (Quercus)
• Magnolia



Table 2
Summary of field measurements with the number of trees, mean stem diameter at
breast height (DBH), mean height, mean crown base height (CBH) and mean crown
diameter (CD) for each species.

Species Number
of trees

Mean
DBH (cm)

Mean
Height (m)

Mean
CBH (m)

Mean
CD (m)

Broadleaved Birch 22 28.19 19.57 0.84 6.87
Bigleaf maple 20 64.12 21.67 5.47 13.17
Elm 20 29.22 15.80 3.03 9.55
Magnolia 25 37.10 20.71 1.34 12.21
Malus 20 17.32 7.43 0.64 7.55
Prunus 20 22.28 6.81 1.26 7.90
Quercus 25 41.34 21.35 2.91 11.42
Sorbus 20 13.10 7.51 1.57 4.75

Coniferous Cedar 23 84.72 24.95 1.21 10.07
Douglas-fir 20 59.21 27.18 7.12 8.12
Larch 25 62.35 24.81 2.23 12.27
Pinus 25 51.69 23.04 3.66 7.94
Redwood 20 71.27 21.76 0.34 8.63
Spruce 22 33.82 16.97 0.15 6.58
Western
hemlock

20 13.86 33.53 2.59 10.85

Note: The number of trees per species was changed depending on howmany trees were
clearly detected at the office.
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the average of the two perpendicular measurements. A summary of
field measurements for each species is shown in Table 2.

In the office, all GPS data were post processed to obtain
differentially corrected coordinates. The custom trilateration program
was usedwith the GPS locations and the distances and azimuths to the
triangle points to obtain final point locations and the local magnetic
declination. The distance and azimuth shots to other points of interest
Fig. 2. Display of individual trees using FUSION/LDV software. The location of individual tree
data viewer (LDV) with individual returns colored by height values (blue colors with low heig
conical cylinders shown on top of (b) and broadleaved species using yellow round top coni
using the corrected triangle locations and local magnetic declination
were processed.

3. Methods

3.1. Isolation of individual tree crowns

Individual trees were initially detected with the aid of field-
measured stem location using planimetric (x–y) position of the stem,
tree height and crown diameter using FUSION/LDV software which
displayed the LIDAR return data near the approximate tree location
(Fig. 2). Even though tree stems were not correctly positioned relative
to the point clouddata,field-measured tree height and crowndiameter
helped the detection of trees when the x,y positioning errors are
within 2 m. In case that tree locations were still vague, these samples
were ignored from the dataset. Initially collected numbers of trees
were changed depending on how many trees were clearly detected at
the office. A location for each tree was assigned and the approximate
crown diameter was manually measured using the LIDAR point cloud.
McGaughey et al. (2004) discussed the limitations of using this
software when identifying and isolating individual trees in areas
where tree crowns overlapped. Although isolated trees were selected
for measurement in the field, some tree crowns overlappedwith other
tree crowns. Laser returns representing the ground surface and those
less than 1 m above the ground surface were omitted from the data
subsets to remove the effects of laser points from the groundcover and
low vegetation. The remaining laser points are called non-ground laser
points. Next, the laser points within the individual tree crowns were
isolated within a cylinder defined by the field-measured location and
crown diameter for each tree. Crown base height was calculated using
s is plotted over aerial photography (a). LIDAR point clouds are displayed in the FUSION
ht levels through red colors with high height levels). Conifers are displayed using white
cal cylinders at the bottom of (b).



Fig. 3. The subset of LIDAR returns representing a single tree is evaluated using a series
of radial profiles. (a) shows an overhead view of isolated individual tree crowns overlaid
by eight, 45°radial sectors, (b) shows a horizontal view of sector 1 and illustrates the
method used to determine the presence of overlapping tree crowns by evaluating the
computed mean point heights for laser returns at each 0.5 m interval, from the tree
center to the crown edge, and (c) shows final subset after sector 1 was deleted because
there was an adjacent tree within this sector. LIDAR point clouds are colored by height
values (blue colors with low height levels through red colors with high height levels).

1580 S. Kim et al. / Remote Sensing of Environment 113 (2009) 1575–1586
0.5 m height layers (Holmgren & Persson, 2004). Each layer that
contained less than 1% of the total number of non-ground laser points
within an individual tree was set to zero and the others to one. The
crown base height was then set as the distance from the ground to the
lowest laser data point above the highest 0-layer found.

After LIDAR point clouds were isolated within the boundary of the
approximate crown diameters, a more sophisticated algorithm was
applied to obtain a more precise, “pure,” set of laser points belonging
to each individual tree crown. When tree crowns were significantly
overlapped, laser reflections from both trees are likely mixed within
their crowns. It is impossible to associate a specific return with one of
the trees so all laser points in the coalesced crowns should be isolated
to obtain more pure reflectance information for each tree.

Naturally, a crown surface tends to get lower from a tree top (or a
crown center) towards the crown edge. Coniferous species usually
have one apex at or near the tree center, whereas broadleaved species
often have multiple apices around the tree center. Therefore, the tree
center was defined differently depending on the species: the treetop
(highest point)was used for coniferous species and the center of a tree
crown, as a mean value of x- and y-coordinates within a crown was
used for broadleaved species. The method of evaluating distributions
of LIDAR point clouds radially from the tree center to the crown edge
consisted of three stages (see Fig. 3):

(1) LIDAR point clouds within the boundary of crown diameters
were divided into eight, 45° radial sectors extending from the
tree center to the crown edge (see Fig. 3(a)),

(2) for each sector, the horizontal distance from the tree center to
the return was computed and the return height stored (see Fig.
3(b)), and

(3) the resulting list of points is sorted using the horizontal
distance and ameanpoint height for laser pointswas computed
at every 0.5 m horizontal distance interval starting from the
tree center (see Fig. 3(b)).

The length of the radial sample of laser points varies depending on
the crown radius, from a minimummeasurement of 1.5 m (Sorbus) to
the maximum of 11.5 m (Acer macrophyllum). The transect calculated
as the computed mean height for each 0.5 m interval along the new x-
axis can fall into one of three general cases. For the first case, mean
point heights decrease from the tree center to the crown edge
consistently. In this case, the tree was assumed to be purely isolated
and all laser points were used for the later analysis (see Fig. 4(a)). For
the second case, mean point heights start decreasing from the tree
center but begin increasing over the last few intervals (see Fig. 4(b)).
In this case, two trees were assumed to overlap around the edge of
tree crowns and the intervals wheremean point heights are increasing
were excluded. Three different scales were applied to each sector
depending on the crown size:

1) if average crown radius was less than 3 m (small crown), the last
intervals were deleted up to two intervals (1 m),

2) if average crown radius was between 3 and 6 m (medium crown),
the last intervals were deleted up to three intervals (1.5 m), and

3) if average crown radius was over 6 m (large crown), the last
intervals were deleted up to four intervals (2 m).

For the third case, mean point heights start decreasing from the
tree center but begin increasing in the middle of the transect (see
Fig. 4(c)). In this case, there are two possibilities: one possibility is
that foliage is irregularly distributed within the crown, increasing the
mean point height through the middle of the transect, and the other is
that two tree crowns overlap. For cases where the foliage is irregularly
distributed, the tree crown can be considered as being isolated and all
laser points were used for later analysis. For cases where tree crowns
overlap, laser points within the overlap area should be deleted. If the
trend of mean point heights increases in the middle of the transect
consecutively over a certain distance threshold, the tree crown was
assumed to overlap in that sector and this sector was excluded (see
Fig. 3(c)): 1) if the mean point heights increase for more than two
intervals (1 m) in the small crown, the sector was excluded, 2) if the
mean point heights increase for more than three intervals (1.5 m) in
the medium crown, the sector was excluded, and 3) if the mean point
heights increase for more than four intervals (2 m) in the large crown,
the sector was excluded. The task of analyzing and excluding laser
points belonging to neighborhood trees was conducted using the
Interactive Data Language (IDL) from Research Systems, Inc.



Fig. 4. Isolated individual tree crowns fall into one of three cases. A tree crown is not overlapped (a), a tree crown is slightly overlapped (b), and a tree crown is severely overlapped (c)
with other trees. LIDAR point clouds are colored by height values (blue colors with low height levels through red colors with high height levels).
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3.2. Computation of variables

Using laser points within each crown, variables were computed to
analyze intensity data for each tree. All variables were derived using
laser returns that were located above the crown base height. Mean
intensity values were computed using returns representing the entire
crown, upper crown and crown surfacewithin each tree crown in both
leaf-on and leaf-off datasets. The role of upper canopy to estimate
forest stand level parameters has been emphasized (Popescu et al.,
2002) and laser returns from the upper crown are less affected by
overlapped areas than those from the entire crown. The uppermost
3m of the crown observed in the field wasmostly open in this dataset.
Therefore, an upper crown was defined as laser points within 3 m
(vertical distance) of the highest laser point. Some individual trees of
Prunus, Malus and Sorbus had crown lengths less than 3 m. In these
cases, laser points for the entire crownwere used for the upper crown.

Laser points representing the crown surface were extracted after
creating a canopy surface model using FUSION/LDV software. A
0.5×0.5m grid was overlaid onto the point data.Within each grid cell,
the elevation of the highest laser point was assigned to the center of
the grid cell. The resulting surface model drapes over the laser points.
However, the surface may be slightly lower than many of the highest
returns since the horizontal location of the grid cell center will not
be the same as the location of the highest points. Returns close to
the crown surface are more likely to represent leaves in the leaf-on
conditions, and therefore the intensity of the crown surface would
represent leaf reflectance values well. Attributes of laser returns
within 1 m and 0.5 m of the surface were compared to obtain samples
containing returns representing foliage without eliminating too many
laser points. The difference between the mean intensity values com-
puted using returns within the 1 m and 0.5 m buffers were compared
and found to be nearly equal. Tomaintain a large number of returns for
analysis, the 1 m buffer was used for computing variables.

In most cases, first returns have the highest intensity values when
compared to other returns in the same pulse. Intensity values for first
returns aremost easily interpreted since they represent a direct, albeit
uncalibrated, measurement of the reflectivity of the target material
(McGaughey et al., 2008). Mean first return intensity values were
computed for the entire crown, upper crown and the crown surface.
To compare the variability of intensity among species, coefficient of
variation (CV) was computed. The CV, defined as the ratio of the
standard deviation to the mean, is useful when comparing variability
between data with different means. The following nine variables were
derived in leaf-on and leaf-off datasets using isolated laser returns
within each crown: mean intensity values for the entire crown using
all returns (entire_all), mean intensity values for the entire crown
using first returns (entire_1), mean intensity values for the upper
crown using all returns (upper_all), mean intensity values for the
upper crown using first returns (upper_1), mean intensity values for
the crown surface using all returns (surface_all), mean intensity
values for the crown surface using first returns (surface_1), coefficient
of variation of all return intensity for the entire crown (cv_all),
coefficient of variation of first return intensity for the entire crown
(cv_1), and proportion of first returns (prop_1).

3.3. Scaling

Because a topographic range of this study site is not significant and
scan angles are narrow (b11° off-nadir) for both datasets, raw
intensity data were used without additional radiometric calibration
at the first step. Next, we randomly extracted multiple samples of
man-made objects whose conditions are considered to be constant
between the two LIDAR datasets and compared their intensity values
for each sample. We collected 11 samples from paved surfaces and
roof tops, respectively and compared their intensity values using box
plots. The box plot results showed that the variability across the
samples is constant for each LIDAR dataset albeit the ranges of
intensity values are different, meaning that two LIDAR datasets are
comparable. Next, we computed the ratio of the leaf-off to leaf-on
medians for each sample and used the average ratio to scale the leaf-
on intensity medians. Finally, we gained a scaling factor of 16.43949 to
multiply the leaf-on data.



Table 3
The result of a crown overlap analysis with the number of trees with andwithout crown
overlap.

Non-overlapped Overlapped

Case 1 Case 2 Case 3 Total

# of trees 147 8 67 223
Proportion of # of trees 0.66 0.04 0.3 1

Note: Case 2 indicates crowns overlapped at the edge and case 3 indicates crowns
significantly overlapped.
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3.4. Analysis methods

Pearson's Product Moment Correlation Coefficients were com-
puted to find the correlations between variables with leaf-on and leaf-
off datasets, respectively.

To compare mean intensity values among species, entire crown
mean intensity values using all returns (entire_all) and first returns
(entire_1) were compared for each species. Also, mean intensity
values for different crown portions were compared among species.
Entire crown mean intensity data using the first returns (entire_1) in
leaf-on data were multiplied by a scaling factor, 16.43949 and
compared with those in leaf-off data using a box plot.

Principal component analysis (PCA) was conducted to determine a
subset of the original variables which contains, in some sense,
virtually all the information available in the complete set of these
variables (Everitt & Dunn, 2001). The size of the subset of original
variables to be retained was determined by the number of compo-
nents (Jolliffe, 2002). Jolliffe (2002) suggested to retain components
extracted from a correlation matrix whose associated Eigen values are
greater than 0.7. Each variable is selected, one associated with each
component, as the one not already chosen which has the greatest
absolute coefficient value on the component. In this study, all the
original variables in both leaf-on and leaf-off datasets were used for
the PCA to select a subset of variables using the r statistical package.

For leaf-on data, three variables were selected according to the
criteria; mean intensity values for the entire crown using first returns
(entire_1), coefficient of variation of all return intensity for the entire
crown (cv_all), and proportion of first returns (prop_1). For leaf-off
data, three variables were selected. Two variables were same as leaf-
on data (entire_1 and prop_1), and the other variable was coefficient
of variation of first return intensity for the entire crown (cv_1).
However, it will be more useful to use the same subset of the variables
to compare two LIDAR datasets more directly. Because first return
analysis will be more direct and easier to interpret than all return
analysis, we used cv_1 for both datasets. Finally, three variables,
entire_1, cv_1, and prop_1 were used for both LIDAR datasets.

A simple tree species classification test for broadleaved and
coniferous species was performed on the selected subset of the
original variables using a classical linear discriminant function. To
evaluate the performance of a linear discriminant function, the
function was applied to the data from which it was derived and
calculated the misclassification rate. In this study, an improved
estimate of the misclassification rate of a discriminant function, so
called, leaving-one-out method was used in which the discriminant
function is derived from just n-1 members of the sample and then
used to classify the member not included. The process is carried out n
times, leaving out each sample member in turn (Everitt & Dunn,
2001). The percentage of the correctly classified rate was calculated;
(1-misclassification rate) %. This classification method was performed
on the three different datasets, leaf-on, leaf-off and combined one and
the results were compared. For leaf-on and leaf-off data analysis, the
three variables selected (entire_1, cv_1 and prop_1) were used
respectively and for the combined data analysis, six variables
including two subsets of variables were used.

Also, a subset of the original species which represents deciduous
broadleaved and evergreen coniferous species by excluding three
flowery species, Magnolia, Malus, and Prunus and one deciduous
conifer, Larixwas tested using the same classification method and the
results were compared with those using all original species.

4. Results

4.1. Crown overlap analysis

The result of applying the process of untangling crown overlap is
shown in Table 3 indicated with the number of trees falling into three
cases: case 1–non-overlap, case 2–overlap at the crown edge, and case
3–significantly overlap. Totally,147 trees out of 223 trees (case 1)were
not overlapped, nine trees were slightly overlapped at the crown edge
(case 2), and 67 trees were significantly overlapped (case 3).

It was obvious to find the different mean intensity values between
overlapped and non-overlapped crowns within the same deciduous
trees in leaf-off data before applying this method. The boxplot results
using the entire crown with the first returns comparing mean
intensity values among species before and after applying the method
of untangling crown overlap is shown in Fig. 5. The mean intensity
values became similar between overlapped and non-overlapped trees
after adjusting overlapped tree crowns using this method. For
example, the mean intensity values for non-overlapped species,
Quercus, Acer macrophyllum and Ulmus were 9.42, 11.26 and 10.34,
respectively while those for overlapped species were 22.30, 21.54 and
17.52, respectively. When adjusting these three overlapped species
using this process, the mean intensity value were changed into 9.70,
13.21 and 11.80, respectively. However, it should be noted that conifers
didn't show significant differences for mean intensity values between
overlapped and non-overlapped individual trees and so the applica-
tion of this method didn't make significant differences after adjusting
overlapped coniferous tree crowns.

The mean intensity values before and after adjusting this method
for all individual trees were significantly different using Student's two
sample t-test in both leaf-on and leaf-off datasets (pb0.001).

4.2. Correlations between variables

The results of Pearson's Product Moment Correlation Coefficients
(r) between variables with leaf-on and leaf-off data showed that six
mean intensity variables, entire_all, entire_1, upper_all, upper_1,
surface_all and surface_1, were strongly positively correlated with
each other with r greater than 0.88 with leaf-on data and 0.95 with
leaf-off data. This result implies that all of the variables are not
necessarily used for the classification analysis and needs to be reduced
using appropriate method such as Principal Component Analysis.

4.3. Boxplot results

Box plots of mean intensity values for the entire crown using first
returns for species with leaf off and scaled leaf-on are shown in Fig. 6.

Generally, broadleaved species showed higher mean intensity
values than coniferous species with the scaled leaf-on data. Song et al.
(2002) reported the same result using LIDAR intensity data. Betula
had the lowest mean intensity values, 26.3, among species with leaf-
on data probably because Betula has less dense crown structures than
other species. Mean intensity values were affected by the density of
crown structures and found to be useful to differentiate tree species
(Holmgren & Persson, 2004).

In leaf-off data, Acer macrophyllum, Ulmus and Quercus, all of
which had no foliage at the time of data acquisition, had very low
mean intensity values (12.5, 11.6 and 9.6) compared with other
species (the range of mean intensity values for the evergreen conifers
is 36.2–47.8). Some trees of Betula, Sorbus and Larix had leaves that
were emerging when the leaf-off data were acquired. These species
had higher mean intensity values (15.7, 17.7, and 24.1) than deciduous



Fig. 5. Box plots of entire crown using first returns comparing mean intensity values among species before and after applying the method of untangling crown overlap with leaf-off
data (Oak-Quercus; Blm-Acer Macrophyllum; Elm-Ulmus; Sor-Sorbus; Mal-Malus; Bir-Betula; Pr-Prunus; Mg-Magnolia; Ce-Thuja plicata; Pin-Pinus; Sp-Picea; Lar-Larix; DF-Pseudotsuga
menziesii; WH-Tsuga heterophylla; Rd-Sequoia sempervirens).
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trees without foliage. In addition, three species, Prunus, Malus and
some individuals within Magnolia, which were flowering when the
leaf-off data were acquired also showed higher intensity values (33.6,
32.8, and 29.8) among the broadleaved species.
Fig. 6. Box plots of entire crown mean intensity values using first returns among species with
Sor-Sorbus; Mal-Malus; Bir-Betula; Pr-Prunus; Mg-Magnolia; Ce-Thuja plicata; Pin-Pinus; Sp-Pice
With leaf-off data, Magnolia and Prunus showed high variation of
mean intensity values between individual trees partly because some
trees had flowers or leaves while others didn't have foliage within
species. Acer macrophyllum, Ulmus and Quercus had very low variation
leaf-off data and scaled leaf-on data (Oak-Quercus; Blm-Acer Macrophyllum; Elm-Ulmus;
a; Lar-Larix; DF-Pseudotsuga mensiesii; WH-Tsuga heterophylla; Rd-Sequoia sempervirens).



Table 5
The result of linear discriminant function for broadleaved and coniferous species with
all species and a subset of species with leaf-on, leaf-off and combined datasets.

Variables Classification accuracy (%)

Leaf-on dataset Leaf-off dataset All datasets

Broadleaved vs. coniferous 73.1 83.4 90.6
Deciduous broadleaved vs.
evergreen coniferous

63.0 97.1 98.9

Table 4
The result of a linear discriminant function for broadleaved and coniferous species for
each variable with leaf-on, leaf-off and combined datasets.

Variables Classification rate (%)

Leaf-on dataset Leaf-off dataset All datasets

Entire_all 71.2 78.5 93.3
Entire_1 69.9 79.4 91.0
Upper_all 61.3 80.3 89.7
Upper_1 60.9 80.3 90.1
Surface_all 66.3 79.4 87.0
Surface_1 68.1 79.8 87.0
Cv_all 56.2 69.0 75.4
Cv_1 69.9 71.7 82.0
Prop_1 54.2 66.9 69.8

Note: Each value was computed as a percentage of (1-misclassification rate).
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of mean intensity values between individual trees with leaf-off data
partly because these species had only woody materials such as
branches and stems without leaves.

With the leaf-off data, the variation of mean intensity values of
individual trees within Magnolia was very high because both
deciduous and evergreen Magnolia were collected in this study.
Some trees were flowering with or without leaves and others had no
foliage at the time of the leaf-off data acquisition. Individual trees with
leaves or flowers within Magnolia had high intensity values as much
as other species with foliage whereas Magnolia trees without foliage
had low intensity values as much as other species without foliage.
Individual trees within Acer macrophyllum, Ulmus and Quercus had
very small variation of mean intensity values with leaf-off data
because they were composed of only woody material, branches and
stems.

The relative magnitude of mean intensity values across coniferous
species was similar between leaf-on and leaf-off datasets because
these species were evergreen and had leaves in both datasets except
Larix. Larix showed very low mean intensity values among conifers
with leaf-off data because it is the only deciduous species among
conifers in this study and therefore, its intensity values with leaf-off
data were associated with woody materials.

Pseudotsuga menziesii, Tsuga heterophylla, Sequoia sempervirens
and Picea showed higher intensity values than Larix, Thuja plicata and
Pinus in both leaf-on and leaf-off data. This result could be related to
their leaf structures. The former four species have single needles,
whereas Pinus and Larix have clustered needles. Species with single
needles showed higher intensity than species with clustered needles
probably because clustered needles have a higher proportion of
exposed branch between needle clusters, which would increase the
proportion of energy reflected from branches. Among coniferous
species, Sequoia sempervirens had the highest mean intensity values
with both leaf-on and leaf-off datasets probably because of their dense
leaf structures.

4.4. Mean intensity analysis among different crown portions with
different returns

Generally, mean intensity values for the upper crown and crown
surface were higher than those for the entire crown. This is probably
because these portions of the crown contain comparatively more
foliage and younger foliage than the interior of the crown. Rock et al.
(1994) supports this result by reporting that second year foliage
showed lower reflectance than first year foliage in near infrared
wavelength regions. Mean intensity values for the upper crown or the
crown surface for short species, Malus, Prunus and Sorbus were not
consistently higher than those for the whole crown. Considering the
small size of these species, 1 m buffer from the canopy surface model
probably does not represent the crown surface which is expected to
contain more leaves and younger leaves than the entire crown does.
However, buffer thicknesses less than 1 m probably does not capture
enough laser points. This result implies that analysis using the upper
portion of the crown or crown surface probably does not provide
useful information for these small-sized species.

4.5. Proportion of first returns

Deciduous species in the leaf-off data had low proportion of first
returns, for example, Acer macrophyllum, Ulmus and Quercus had 0.64,
0.68 and 0.58, respectively while three short species, Malus, Prunus
and Sorbus, had high proportions of first returns in both leaf-on and
leaf-off datasets (N0.95). The proportion of first returns has been used
before to characterize trees species structures (Holmgren & Persson,
2004).

4.6. The result of discriminant function

To assess the separability of broadleaved and coniferous species for
each variable, linear discriminant function was performed with cross
validation for leaf-on, leaf-off, and combined datasets. The result is
shown in Table 4. We found that the classification rate was constant
regardless of scaling intensity values for the leaf-on data. Therefore,
two LIDAR datasets with different ranges of intensity values were
comparable with a discriminant function. Generally, properly classi-
fied rate was higher with the variables computed using leaf-off data
than those using leaf-on data. Overall classification rate for the two
species groups was improved by combining leaf-on and leaf-off
datasets. Among variables computed using the leaf-on dataset, mean
intensity values for the entire crown using all returns (entire_all)
showed the highest classification rate (71.2%) while among variables
computed using the leaf-off dataset, mean intensity values for the
upper crown showed the highest classification rate (80.3%). When
combining leaf-on and leaf-off datasets, mean intensity values for the
entire crown using all returns (entire_all) showed the highest classi-
fication rate (93.3%).

The result of classification rate using a subset of variables
computed from Principal Component Analysis is shown in Table 5.
The classification rate using the leaf-off dataset was higher (83.4%)
than the leaf-on dataset (73.1%). When combining leaf-on and leaf-off
datasets, the classification rate was raised up to (90.6%) The
classification results using a subset of species group without four
species, Magnolia, Malus, Prunus, and Larix were also compared
(see Table 5). For the leaf-off data, the subset of species groups
improved the classification rate up to 97.1% and for the combined
datasets, up to 98.9%. The classification rate decreased for the leaf-on
data (63.0%). The LIDAR dataset obtained in mid-March did not
capture trees in perfect leaf-off conditions. In a normal year, trees have
not flowered or developed leaves by mid-March. However, the spring
of 2005 was warmer than normal andmany tree species broke bud up
to 2 weeks earlier than normal. Predictably, classification rate using
the leaf-off data was improved by deleting these four species. This
result implies that LIDAR data acquired during the winter with
complete leaf-off conditions would result in better classification for
broadleaved and coniferous species. The classification rate decreased
without these four species in the leaf-on dataset. This is probably
because foliar conditions of these species are not significantly dif-
ferent from the others in summer and only reduced the overall sample
size.
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5. Discussion

The analyses of two seasonal LIDAR intensity datasets for
individual tree species indicate that intensity data can be used to
differentiate some species and species groups.

The different ranges of intensity values for the two LIDAR datasets
were predictable given that intensity values vary between LIDAR
sensors and between different LIDAR flights with the same sensor.
More studies are needed for the calibration of LIDAR intensity data
depending on scan angles, laser path length and overlap flight lines to
make it possible to use different LIDAR data for the same study site.
Especially, tree species have different features depending on the time
of a year and so if different seasonal LIDAR data were available, the
discrimination between tree species would be more accurate than
using one seasonal LIDAR data. Using intensity data for forest research
is more difficult than for other studies because trees have awide range
of intensity values compared with other land cover types (Hasegawa,
2006; Song et al., 2002).

In this study, the result of discriminant functions between
broadleaved and coniferous species implies that combining leaf-on
and leaf-off data would result in higher separability than using
LIDAR data from one season. Although the variables computed from
two LIDAR datasets were compared and combined for carrying out
discriminant functions albeit discriminant functions had the same
values regardless of different intensity ranges, it should be noted
that the two LIDAR datasets were acquired with different systems
with different settings. These system effects should be considered
when directly comparing different LIDAR datasets even though
we scaled leaf-on data using a scaling factor computed from testing
man-made objects extracted from the given LIDAR datasets. The
method of computing scaling factor should be more rigorously tested
for later analysis to use multiple LIDAR sets at the same study. It
would be also interesting to have multiple LIDAR data sets for either
the leaf-on or leaf-off conditions with same sensors to see how much
variation is brought in by different data collection dates over the same
conditions.

Usually, forest species classification is studied in forest stands and
so the canopy overlap is more significant than the study in the
Arboretum. In fact, individual tree samples were mostly isolated in
this study site and laser returns within an isolated tree crown were
tested if they represent the same tree. The methodology of testing the
crown overlap to untangle laser returns within coalesced crowns in
this study was focused on isolating laser returns associated with
different species. We simply tested the validation of this method by
comparing mean intensity values for overlapped individual tree
crowns before and after applying this process and found that this
method was useful to isolate laser returns within coalesced crowns
especially for deciduous trees in leaf-off data. This method was used
when a single tree was detected accurately which was possible in this
study site, Arboretum, with reliable datasets to prove the exact single
tree locations. Therefore, this method of detecting crown overlap
might not be easily applied in dense forests with usually significant
crown overlaps and with the same species types overlapped.

This study result implies that LIDAR intensity data are valuable to
identify different species with different biophysical characteristics
even though we didn't investigate thoroughly mean intensity values
across various biophysical structures. Future study would include
investigate these factors between specific tree species beyond
deciduous and coniferous species groups. Structure metrics computed
from each crown which is a well established variable used in forest
research could be tested for the species differentiation by comparing
and combining with intensity variables.

This work contributes to the growing body of literature that
demonstrates the potential of LIDAR remote sensing by showing that
it has a potential to differentiate tree species using intensity data with
different LIDAR datasets.
6. Conclusions

Overall, our results show that LIDAR intensity data can be used to
distinguish broadleaved species from conifers and to further distin-
guish various tree species within these broad groups. Different
intensity values between species were related not only to reflective
properties of the vegetation, but also to system effects from different
LIDAR settings. Two different seasonal LIDAR datasets resulted in
different relative intensity values among species with better separa-
tion using leaf-off data than leaf-on data, albeit with two different
LIDAR sensors with different settings. Future directions for this study
would include acquiring multiple LIDAR data using the same LIDAR
systems with the same conditions to control for system effects. This
will lead to more reliable classification results with better differentia-
tion between tree species.

It should be noted that the study area used in this research is the
Arboretum, which is not a typical forest research area and so it must
be acknowledged that the approaches over dense forest stands, where
forest canopy overlap is significant, individual tree species is not
identified, and understory usually exits may be different.
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